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SUMMARY 
This paper studies the effects of a circular magnetic field on the flow of a conducting fluid about a porous 
rotating disk. Using modern quasi-Newton and globally convergent homotopy methods, numerical solutions 
are obtained for a wide range of magnetic field strengths, suction and injection velocities and Alfven and disk 
speeds. Results are presented graphically in terms of three non-dimensional parameters. There is excellent 
agreement with previous work and asymptotic formulae. 
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INTRODUCTION 

The flow past a rotating disk in a viscous fluid has received considerable attention in the past few 
decades. Von Karman' first obtained a solution for this problem. Later Cochran' obtained a more 
accurate solution by numerical integration of the governing equations. The effects of suction and 
injection at the disk surface were studied later by S t ~ a r t , ~  Sparrow and Gregg,4 Kuikens and 
A ~ k r o y d . ~  

The rotating disk problem in the presence of an axial magnetic field was studied by Sparrow and 
Cess,' Rizvi* (whose mathematical formulation and numerical solutions are incorrect) and 
Pande.' Pao" studied the flow of a viscous electrically conducting fluid past a rotating disk with a 
circular magnetic field at the disk surface. 

In the present investigation we study the effects of surface suction and injection on the flow past a 
rotating disk in the presence of a circular magnetic field. The governing equations are similar to 
those derived by Pao." Here we assume that there is no magnetic field in the fluid far from the disk 
and also that there is a field in the tangential direction in the boundary layer generated by external 
means within the disk itself. Such a field has application in the shielding of a rotating body from 
excessive heating." 

The governing partial differential equations of the problem are reduced to non-linear ordinary 
differential equations using similarity transformations. The system is then solved numerically 
0271-2091/88/060659-11$05.50 Received 16 January 1987 
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using quasi-Newton and homotopy methods. The flow depends on the non-dimensional 
parameters a (magnetic Prandtl number), fi (ratio of Alfven speed to disk speed) and A (suction or 
injection parameter). 

FORMULATION OF THE PROBLEM 

The governing equations in cylindrical polar co-ordinates (r,  8, z )  for an incompressible, viscous, 
electrically conducting fluid in axisymmetric steady motion’ are 

aw a w  ap ah ah 
u- + w-+--j---h-- v v 2 w  =o, 

ar aZ aZ ar a Z  

a a 
- (uf- ug) +-(uh - w g )  + 9 ar aZ 

(3) 

(7) 

where 

and u, u, w and1; g, h are the components of velocity and normalized magnetic field strength 
respectively in the r,  8, z directions respectively. v is the kinematic viscosity, q = l/po is the magnetic 
diffusivity, p is the magnetic permeability and 0 is the electrical conductivity. Here 

(Lg,  h)=(f,,g,, hl)(p/p)”2 and P = ( f 2 + g Z + h 2 ) / 2 + p / p + X ,  

wheref,, gl, h ,  are the components of the magnetic field, p is the fluid pressure, p is the uniform 
density and is the potential for a unit mass of the conservative body forces. It is assumed that v, o 
and p are constants and the net charge density is zero. 

SIMILARITY SOLUTION AND BOUNDARY CONDITIONS 

The disk surface is in the plane z = O  and rotates about the z-axis with constant angular velocity w. 
An axial electric current of uniform current density J ,  is imposed at the disk surface. Equivalently, 
a tangential magnetic field component g =Rr is imposed at the disk surface, with SZ =(p/p)’I2(J0/2) 
a constant, andfand h are zero. 

Using the similarity transformations 
u = wrrn’((), w = - 2(vw)’I2rn([), P =  vwS((), (8) 
u =arc((), g = RrM([), ( = Z(W/V)’’2, 
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equations ( 1 H 7 )  reduce to 

m r r r + 2 m m ” - ( m ’ ) 2 + G 2 - ~ 2 M 2 = 0 ,  (9) 

(10) 

(1 1) 

(12) 
where a = v/q is the magnetic Prandtl number and p = sZ/w is the ratio of the Alfven speed to the 
disk speed. Note that equation (12) decouples from the others and S(5) is easily obtained once m(5) is 
known. 

It is assumed that the disk is porous and that either suction or injection occurs at the disk surface 
such that 

2(mG’ - m’G) + G” = 0, 

M ’  + 2umM‘ = 0, 

S’ + 4mm’ + 2m” = 0, 

~ ( 0 )  = - 2&)A, 

so A > 0 corresponds to suction and A < 0 corresponds to injection. The other boundary conditions 
are 

u(0) = 0, u(0) = wr, 
u(oo)=O, u(Oo)=O. 

The boundary conditions for equations (9H12)  are 

m(0) = A, m‘(0) = 0, G(0) = 1, M(O)= 1, (13) 

m1(5)-+0, G(L)-+O, M(C)+O, S(r)+O as [-+co. (14) 

NUMERICAL METHOD 

The computation of S(5) is straightforward and is not discussed here. Following the format in 
Heruska,” define 

x= G(0) . (;;:) 
Let m(5; X), G(5; X), M(5; X) be the solution of the initial value problem given by equations (9H11)  
with initial conditions (13) and (15). The original two-point boundary value problem given by 
equations (9H11)  and (13) is numerically equivalent to solving the non-linear system of equations 

m‘(q X) 
F(X)=( G(z; X) ) =0, 

M k  X) 
where 7 is chosen large enough such that 

lm’(5) - m’(z)l+ IG(5) - G(4I + I M ( 0  - M(z)l < 6 

for z <[ < co and a given E>O. Equation (16) is derived from the boundary conditions (14). 
Algorithms for solving non-linear systems like (16) typically require partial derivatives such as 
am’lax,. We can write the functions needed as 



662 S. K. KUMAR, W. I. THACKER AND L. T. WATSON 

fork = 1,2,3,  where rn, G and M are functions of c. Now rn'(c), G([),  M(I;) and their partial derivatives 
can be calculated from the first-order system 

Y; =Yz,  

Y; =Y3, 

Y; =a2c+ c- Y24-2Y1Y3, 

Yk =Y5, 

Y; =-2(Y,Y,-Y,Y,), 

Yb =Y7, 

Yk =Y9, 

y 9  = YlO, 

y ;  1 = y12,  

Y; =-2aY,Y, ,  

y 1 0  = 2(a2 Y6Y1 3 - y4y11- y3 y8 - y1 YlO + y2 y9), 

Y;, =2(  y9 y4 + y, y11- y1 y 1 2 -  y8 y5), 

y;3 = y14, 

y14=-2a(Y8Y7+ yly14) ,  

Y(O)=(A, 0, X I ,  1, X Z ,  1, X,,  0, 0, 61k, 0, 82k, 0, 63k), 

where 6, is the Kronecker delta. By solving this system three times, for k = 1, 2, 3, the Jacobian 
matrix DF(X) of F(X) can be calculated. 

Two methods were utilized to solve this problem, a quasi-Newton least-change secant update 
method and a globally convergent homotopy method. The quasi-Newton code used was HYBRJ 
from the MINPACK subroutine package from Argonne National Laboratory." These quasi- 
Newton routines are robust and usually quiteefficient. However, they fail at times by converging to 
local minima of F(X)TF(X) which are not solutions of F(X)=O. 

The other method, a globally convergent homotopy method from the subroutine package 
HOMPACK developed by Watson et u I . , ' ~  does not suffer from the convergence problems of the 
quasi-Newton method. However, this method requires considerably more computation time. 
Details about the homotopy algorithm and some of its applications can be found in 
References 14-17. 

The computational strategy here was to try to solve (16) first using the relatively inexpensive 
quasi-Newton method. If that failed, then the expensive, but guaranteed convergent, homotopy 
algorithm was used. 

As previously mentioned, these quasi-Newton and homotopy methods use some partial 
derivatives with respect to the initial conditions. For some values of A ,  01 and a, these partials 
increase drastically as z increases. This results in numerical instability in cases where A < - 1 (i.e. 
large injection) and a> 10. Also, cases of large injection and large cause M ( ( )  to approach zero 
very slowly. This requires z to be very large, which also causes numerical instability. Such 
instabilities are inherent with shooting, on which the definition of F(X) is based. Other ways of 
discretizing the two-point boundary value problem (9H14),  such as finite differences, collocation 
and finite elements. will be considered in future work. 
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DISCUSSION 

Figure 1 shows the effect of A on m', G, m and M for a = 0.5 and p= 0-2. The case A = 0 corresponds 
to the impermeable disklo in all the figures. The effect of A on axial velocity is shown in Figure l(a). 
As suction (A > 0) increases, the axial velocity becomes almost constant and maintains the suction 
value throughout the boundary layer. When fluid is injected at the disk surface (A<O),  the 
incoming axial flow is retarded by the injected fluid. The greater the injection velocity, the more the 
inflow is opposed. This results in decreasing the axial velocity at infinity and moving the crossover 
point away from the disk. The radial velocity m' is shown in Figure l(b). The radial velocity 
increases monotonically from zero at the disk surface to a maximum near the disk and then 
decreases monotonically to zero at the edge of the boundary layer. As the injection velocity 
increases, the maximum for the radial velocity increases and moves away from the disk. Increased 
suction velocity decreases the maximum and moves it closer to the disk. The radial velocity 
becomes almost zero for large suction values causing the flow to be two-dimensional. Figure l(c) 
shows the variation in tangential velocity G due to changes in A. The boundary layer thickness 
decreases with increased suction and increases with increased injection velocity. The thickness of 
the boundary layer for the magnetic field M also increases with injection and decreases with 
suction (Figure l(d)). 
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Figure 1. Effect of A on flow and magnetic field with a =0.5 and /3 =0 .2  (a) axial velocity, A=4,2,1,0.5,0, -0.01, - 1 (top 
to bottom);(b)radialvelocity, A =  - 1, -0.05,0,0.5,1,2,4(top to bottom);(c) tangentialvelocity, A =  - 1, -0.05,0,0.5,1,2, 

4 (top to bottom); (d) magnetic field, A = - 1, -0.05, 0, 0.5, 1, 2, 4 (top to bottom) 
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Computations indicate that the effect of a on m, in' and G is small and consequently plots of m, m' 
and G for varying a are not included. Increasing a causes only a small increase in m near the disk. A 
slightly larger increase occurs at infinity. However, this increase diminishes as a gets large; there is 
almost no change in m between a = 5 and a= 10. Similarly, an increase in a causes a small and 
diminishing increase in the radial velocity. The tangential velocity is slightly decreased by an 
increase in a. The effect of a on the magnetic field M is shown in Figure 2(a). For large values of a, 
the magnetic field maintains the same strength as at the disk surface for a small distance from the 
disk and then falls to its edge strength in a very short distance. A higher value of injection ( A  = - 1) 
gives similar effects of a on m, m' and G (not shown), but has a more pronounced effect on M 
(Figure 2(b)). The parameter CI has the same effect on m, m' and G when there is suction ( A  =0-5) as 
when there is injection. The only relevant difference is that m' peaks at a much lower level. 
Increasing a in the presence of suction causes M to fall to the edge strength quickly (Figure 2(c)). 

Figure 3 shows the effect of p on the flow fields when suction ( A  = 1) is applied and a = 1. As p gets 
large, the axial flow (Figure 3(a)) towards the disk decreases and becomes a constant throughout 
the boundary layer when f l=  1. When f l  increases, the radial velocity (Figure 3(b)) decreases and 
disappears at /?= 1. The effect of /? on the tangential velocity and the magnetic field is not very 
pronounced, so is not shown. 
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Figure 2. Effect of a on magnetic field with 8=0-2 (a) A =  -05, a= 10,5, 1,03 (dotted, short dashed, long dashed, solid); 
(b) A =  - 1, a=5, 1,03 (dotted, dashed, solid); (c) A =05, a= 10, 5, 1,03 (dotted, short dashed, long dashed, solid) 
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Figure 3. Effect of on flow fields with A = 1 ,  a = 1 and b=O, 0.2,0.6, 1 (dotted, dashed, solid, dash-dot): (a) axial velocity; 
(b) radial velocity 

Table I. Effect of A, a, and p on m(m), m”(O), M’(0) and G‘(0) 

A U /3 2m(m) m’’(0) - M(0) - G(0) 

4.00 0.5 0.2 8.0008 0.05749 4.00023 8QOO57 
2.00 0 5  0 2  4.0066 0.11479 2.00180 4.00456 
1.00 0.5 0 2  2.0490 0-22387 1.01351 2.03422 
0.50 0 5  0 2  1.2301 0.36553 0.56466 1.16202 
0.00 0.5 0 2  0.8223 0.48806 0.25234 0.60054 

- 0.05 0.5 0 2  0.7999 0.49210 0.22968 0.56088 
- 1.00 0.5 0 2  0.5111 0.38300 0.01678 0-13083 

- 0.50 0.5 0-2 0.6560 0.46997 0.08367 0.29220 
- 0.50 1.0 0 2  0.7249 0.46982 0.06460 0.29280 
- 0.50 5.0 0.2 0.7395 0.46826 0.00072 0.29 178 
-0.50 10.0 0 2  0.7392 0.46799 0.00000 029138 

- 1.00 0.5 0.2 05111 0-38300 0.01678 0.13083 
- 1.00 1.0 0.2 0.6441 0.38278 0.00334 0.13070 
- 1-00 5.0 0.2 0-6642 0.38267 O W 0 0 0  0.13055 

0.50 0.5 0.2 1.2301 0.36553 0.56466 1.16202 
0.50 1.0 0.2 1.2530 0.37531 1.08979 1.17023 
0.50 5.0 0.2 1.2602 0.38587 5.07951 1.1 7484 
0.50 10.0 0.2 1.2605 0.38764 10.05441 1.17511 

-0.50 1.0 0.0 0.7607 0.48948 0.06982 0.302 17 
- 0.50 1.0 0.1 0.7524 048459 0.06855 0.29988 
- 0.50 1.0 0.2 0.7249 0,46982 0.06461 0.29280 
- 0.50 1.0 0.3 0.6680 0.44495 0.05391 028026 
-0.50 1.0 0.4 0-5212 0.40954 004441 0.26031 

1 .00 1.0 0.0 2.0578 0.24242 2.01941 2.03853 
1 .00 1.0 0.2 2.0556 0.23290 2.01867 2.03707 
1 .00 1.0 0.6 2.0378 0.15625 2.01266 2.025 19 
1 .00 1.0 1-0 2~ooOo 000000 2mooo 2mooo 
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The effect of p on the flow fields when fluid is injected at the disk surface (negative A) and a = 1 is 
slight and is not shown. The axial velocity decreases as /? increases. The effect is more pronounced 
at infinity but still small. As /? gets large, an increase in p causes larger decreases in rn at infinity. As /? 
increases, the crossover point from negative to positive flow moves away from the disk. An increase 
in J decreases the radial velocity. Again, this change increases as p increases. However, the 
tangential velocity and the magnetic field strength increase as 

From Table I we can see that changes in A have a more pronounced effect on G’(0) than do 
changes in ci and p. Changes in a have a very small effect on G(0). As A gets smaller (which decreases 
IG(O)l), the effect of A decreases. However, as B gets larger (which also decreases IG’(0)l) there is an 
increasing effect on G’(0). 

From Table I, critical values (where G’((0) = 0) of A, ci and /? would occur for small A and large J. It 
is apparent from the M‘(0) column that M’(0) approaches zero faster than G(0) does. Thus shooting 
needs to use a large z for G and M to converge to zero. As previously mentioned, this results in 
numerical instability, and considerable computational difficulty was encountered attempting to 
find critical values. To find values for A,  CI and p where G‘(O)=O, an expensive and involved 
multiple-shooting techniqueL8 was employed. Using this technique, values for G‘(0) close to zero 
were obtained by varying J and keeping A = 0.1 and a = 1-0. Using three data points close to zero, 
quadratic extrapolation to the limit yielded /? = 1.1072. 

Table I1 shows excellent agreement of our results with the approximate analytic solution 
obtained by Pao” for A =O. The maximum percentage difference in Table I1 is 0.197% for rn”(O), 
0.174% for G’(O), 0.391 % for M’(0) and 2.016% for 2rn(m), the latter occurring at a= 1.0, p=0.70. 

increases. 

Table 11. Comparison of current results with those of Pao” (hatted) 

0.5 0.00 0.51024 051023 0.61592 0.61592 026227 0.26229 0884 0884 
0-5 0.05 050886 050885 0.61501 0-61501 0.26170 0.26172 0882 0881 
0-5 0.10 0.50470 050471 0.61223 0.61223 0.25997 0.25997 0.871 0.870 
0.5 0.15 0.49778 049779 0.60749 0.60748 025696 0.25692 0.852 0852 
0.5 0.20 0,48806 048806 0.60054 0.60054 025236 0.25234 0.823 0822 
0.5 0.25 0.47550 047550 0.59102 0.59100 0.24573 0.24566 0.778 0777 

1.0 0.00 
1-0 0.10 
1.0 0.20 
1.0 030 
1.0 0.40 
1.0 0.50 
1-0 0.60 
1.0 0.70 

0.51024 
0.50558 
0.49 154 
0.46786 
0.43406 
0.38936 
0.33266 
0.26296 

051023 
050558 
0.49 154 
046786 
043405 
038936 
033265 
026289 

0.61592 
0.61 363 
0.60657 
0.59423 
0.575 52 
0.54836 
0.50822 
0.443 19 

0.61 592 
061363 
0.606 5 7 
0.59423 
0.57552 
0.54834 
0.508 16 
0.44242 

0.39625 
0.39469 
0.38991 
0.38152 
0.36872 
0.34998 
0.32186 
0.2745 1 

0.39625 
0.39469 
0.38991 
0.38512 
0.36874 
0.34998 
0.32175 
0.27344 

0.884 0884 
0.880 0880 
0.867 0867 
0844 0844 
0.809 0809 
0.755 0755 
0.669 0669 
0.506 0496 

10.0 0.00 
10.0 0.20 
10.0 0.40 
10-0 0.60 
10.0 0.80 
10-0 1.00 
10.0 1.20 
10.0 1.30 - 

0.5 1024 
0.50058 
0.47120 
0.42078 
0.34650 
0.24202 
0.08714 
0.07 I24 

051023 
050057 
0471 19 
042078 
034650 
024201 
008713 

-0071 10 

0.61592 
0.61378 
0.607 17 
0.59540 
0.57695 
0-548 16 
0.49600 
0.41399 

0.61 592 
0.61 378 
0.6071 7 
059540 
0.57695 
054816 
0.49600 
0.4141 2 

~ 

1.13399 
1.1 29 16 
1.1 1380 
1.08638 
1.04322 
0.97545 
0.85155 
0.65578 

1.13412 
1.1291 5 
1.11379 
1.08638 
1.04322 
0-97545 
0-85155 
0.65606 

~~ ~ - 

0.884 0884 
0.883 0883 
0.878 0878 
0.870 0870 
0.857 0857 
0.838 0838 
0.805 0805 
0757 0759 
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ASYMPTOTIC COMPARISONS 

Applying standard perturbation techniques to equations (9H11) for large A and small a and /?, 
we get 

G(0) x O(0) = - 2 4  

M’(0) x A’(0) = - 2Aa, 

a-8’ m”(0) x h“(0) = - 
4Aa ’ 

From Table I11 we see that the asymptotic formula values compare favourably with the results 
obtained for A 3  1. Also, changes in CL do not affect the goodness of the asymptotic formulae within 
the range studied. Furthermore, there is good agreement for /? values less than 1.0. 

CONCLUSIONS 

The rotating disk acts as a centrifugal fan. The radial flow is balanced by an induced axial flow 
towards the rotating disk. When suction is applied at the disk surface, the radial flow decreases, the 
axial flow at infinity increases towards the disk and the boundary layer thickness decreases. The 
opposite effect is observed when the fluid is injected at the disk surface; the radial velocity increases, 
the axial velocity at infinity decreases and the boundary layer thickens. With an impermeable 
rotating disk, an increase in 8 decreases the axial velocity at infinity and increases the boundary 
layer thickness. As a increases, the boundary layer thicknesses of the flow and magnetic field 
decrease. 

The effect of the magnetic Prandtl number a on the fluid flow is negligible. Similarly, the effect of 
/? on the magnetic field is negligible. Conversely, the effects of c1 on the magnetic field and /? on the 
fluid flow are more significant. 

The tables and figures here show the effect of the parameters A, a and /? on the fluid flow and 
magnetic field for order-of-magnitude variations in the parameters. These data would apply to 
applications in magnetohydrodynamic heat shielding, for example. 
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