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SUMMARY

This paper studies the effects of a circular magnetic field on the flow of a conducting fluid about a porous
rotating disk. Using modern quasi-Newton and globally convergent homotopy methods, numerical solutions
are obtained for a wide range of magnetic field strengths, suction and injection velocities and Alfven and disk
speeds. Results are presented graphically in terms of three non-dimensional parameters. There is excellent
agreement with previous work and asymptotic formulae.
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INTRODUCTION

The flow past a rotating disk in a viscous fluid has received considerable attention in the past few
decades. Von Karman! first obtained a solution for this problem. Later Cochran? obtained a more
accurate solution by numerical integration of the governing equations. The effects of suction and
injection at the disk surface were studied later by Stuart,® Sparrow and Gregg,* Kuiken® and
Ackroyd.®

The rotating disk problem in the presence of an axial magnetic field was studied by Sparrow and
Cess,” Rizvi® (whose mathematical formulation and numerical solutions are incorrect) and
Pande.® Pao!° studied the flow of a viscous electrically conducting fluid past a rotating disk with a
circular magnetic field at the disk surface.

In the present investigation we study the effects of surface suction and injection on the flow pasta
rotating disk in the presence of a circular magnetic field. The governing equations are similar to
those derived by Pao.!? Here we assume that there is no magnetic field in the fluid far from the disk
and also that there is a field in the tangential direction in the boundary layer generated by external
means within the disk itself. Such a field has application in the shielding of a rotating body from
excessive heating.!°

The governing partial differential equations of the problem are reduced to non-linear ordinary
differential equations using similarity transformations. The system is then solved numerically
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using quasi-Newton and homotopy methods. The flow depends on the non-dimensional
parameters o (magnetic Prandtl number), f (ratio of Alfven speed to disk speed) and A (suction or
injection parameter).

FORMULATION OF THE PROBLEM

The governing equations in cylindrical polar co-ordinates (r, 6, z) for an incompressible, viscous,
electrically conducting fluid in axisymmetric steady motion® are
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and u, v, w and f, g, h are the components of velocity and normalized magnetic field strength
respectively in ther, 0, z directions respectively. v is the kinematic viscosity, n = 1/uo is the magnetic
diffusivity, u is the magnetic permeability and ¢ is the electrical conductivity. Here

(/9. W=(f1, 91, b)) (u/p)'* and P=(f*+g¢>*+h*)/2+p/p+1

where f, g,, h, are the components of the magnetic field, p is the fluid pressure, p is the uniform
density and y is the potential for a unit mass of the conservative body forces. It is assumed that v, ¢
and y are constants and the net charge density is zero.

SIMILARITY SOLUTION AND BOUNDARY CONDITIONS

The disk surface is in the plane z =0 and rotates about the z-axis with constant angular velocity w.
An axial electric current of uniform current density J, is imposed at the disk surface. Equivalently,
a tangential magnetic field component g = Qr is imposed at the disk surface, with Q = (u/p)*/*(J,/2)
a constant, and f and h are zero.
Using the similarity transformations
u=cwrnt'({), w= —2(veo)!Zm(0), P=vwS()), 8)

v=wrG(), g=QrM(), {=z(w/v)"?,
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equations (1}+7) reduce to

m" +2mm” —(m')*4-G* — B2 M2 =0, 9
2(mG' —m'G)+G" =0, (10)

M+ 2amM’ =0, (1)

S+ dmm' +2m" =0, (12)

where a =v/n is the magnetic Prandtl number and f=Q/w is the ratio of the Alfven speed to the
disk speed. Note that equation (12) decouples from the others and S({) is easily obtained once m({) is
known.

Itis assumed that the disk is porous and that either suction or injection occurs at the disk surface

such that
w(0)= —2,/(vw)4,

s0 A >0 corresponds to suction and A < 0 corresponds to injection. The other boundary conditions
" u(0)=0, v(0)=or,
u(0)=0, v(00)=0.
The boundary conditions for equations (9)(12) are
m0)=4A, m'(0)=0, G0)=1, M©O)=1, (13)
m(()-0, G({)-0, M)-0, SO-0 as{-co0. (14)

NUMERICAL METHOD

The computation of S({) is straightforward and is not discussed here. Following the format in

Heruska,!! define
ml,(O)
x:( G’(O)). (15)
M)

Let m{{; X), G((; X), M({; X) be the solution of the initial value problem given by equations (9}{11)
with initial conditions (13) and (15). The original two-point boundary value problem given by
equations (3)-(11) and (13} is numerically equivalent to solving the non-linear system of equations

m'(t; X)
FX)=f G(1;X) | =0, (16)
M(z; X)
where 1 is chosen large enough such that
Im'(§) —m' ()| +1G(0) — G(x)| + |M({) — M(z)| <¢

for t<{<oo and a given ¢>0. Equation (16) is derived from the boundary conditions (14).
Algorithms for solving non-linear systems like (16) typically require partial derivatives such as
om'/0X,. We can write the functions needed as

om om' om” 0G 0G' oM 6M’>

= ! ' G G,, M,M,’—_—,—’—_’_—’—’-—_,———
Y (m)m,m * ’ an an an an an an an
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for k=1,2,3, where m, G and M are functions of {. Now m'({), G({), M({) and their partial derivatives
can be calculated from the first-order system

Y, =Y,
Y, =Y,
Yy =fYe+Y3-Yi-2Y,Y,,
Yy =Y,
Y =-2Y,Ys—Y,Y,),

6 =Y
Y, =—2aY,Y,
Yy =Y,
Yy =Y
Yio=2BYsY 3~ Y Y1, — Y3Ys— Y, Y10+ Y2 15),
Yy, =Y,

12=2AYo Yo+ Y, Y1 — Y, Y, — Y3Ys),
Yis=Y,

Yia=—20(YgY;+ Y Y14),
Y(0)=(A5 O’ Xla 1, Xz, 19 X3a Ov 09 51k’ 03 6210 0’ 53k)9

where J;, is the Kronecker delta. By solving this system three times, for k=1, 2, 3, the Jacobian
matrix DF(X) of F(X) can be calculated.

Two methods were utilized to solve this problem, a quasi-Newton least-change secant update
method and a globally convergent homotopy method. The quasi-Newton code used was HYBRJ
from the MINPACK subroutine package from Argonne National Laboratory.!? These quasi-
Newton routines are robust and usually quite efficient. However, they fail at times by converging to
local minima of F(X)"F(X) which are not solutions of F(X)=0.

The other method, a globally convergent homotopy method from the subroutine package
HOMPACK developed by Watson et al.,'® does not suffer from the convergence probiems of the
quasi-Newton method. However, this method requires considerably more computation time.
Details about the homotopy algorithm and some of its applications can be found in
References 14-17.

The computational strategy here was to try to solve (16) first using the relatively inexpensive
quasi-Newton method. If that failed, then the expensive, but guaranteed convergent, homotopy
algorithm was used.

As previously mentioned, these quasi-Newton and homotopy methods use some partial
derivatives with respect to the initial conditions. For some values of A4, « and B, these partials
increase drastically as 7 increases. This results in numerical instability in cases where 4 < —1 (i.e.
large injection) and « > 10. Also, cases of large injection and large f cause M({) to approach zero
very slowly. This requires t to be very large, which also causes numerical instability. Such
instabilities are inherent with shooting, on which the definition of F(X) is based. Other ways of
discretizing the two-point boundary value problem (9)14), such as finite differences, collocation
and finite elements, will be considered in future work.
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DISCUSSION

Figure 1 shows the effect of 4 on m’, G, mand M for x=0-5 and f=0-2. The case 4 =0 corresponds
to the impermeable disk '© in all the figures. The effect of A on axial velocity is shown in Figure 1(a).
As suction (4 > 0) increases, the axial velocity becomes almost constant and maintains the suction
value throughout the boundary layer. When fluid is injected at the disk surface (4 <0), the
incoming axial flow is retarded by the injected fluid. The greater the injection velocity, the more the
inflow is opposed. This results in decreasing the axial velocity at infinity and moving the crossover
point away from the disk. The radial velocity m’ is shown in Figure 1(b). The radial velocity
increases monotonically from zero at the disk surface to a maximum near the disk and then
decreases monotonically to zero at the edge of the boundary layer. As the injection velocity
increases, the maximum for the radial velocity increases and moves away from the disk. Increased
suction velocity decreases the maximum and moves it closer to the disk. The radial velocity
becomes almost zero for large suction values causing the flow to be two-dimensional. Figure 1(c)
shows the variation in tangential velocity G due to changes in A. The boundary layer thickness
decreases with increased suction and increases with increased injection velocity. The thickness of
the boundary layer for the magnetic field M also increases with injection and decreases with
suction (Figure 1(d)).
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Figure 1. Effect of 4 on flow and magnetic field with «=0-5 and §=02: (a) axial velocity, A=4,2,1,05,0, —0-01, —1(top
to bottom); {b) radial velocity, 4 = — 1, —0-05,0,0-5, 1, 2, 4(top to bottom); (c) tangential velocity, 4 = — 1, —0-05,0,0'5, 1,2,
4 (top to bottom); (d) magnetic field, A= —1, —005, 0, 0'5, 1, 2, 4 (top to bottom)
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Computations indicate that the effect of « on m, m" and G is small and consequently plots of m, m’
and G for varying o are not included. Increasing o causes only a small increase in m near the disk. A
slightly larger increase occurs at infinity. However, this increase diminishes as o gets large; there is
almost no change in m between a=35 and a=10. Similarly, an increase in a causes a small and
diminishing increase in the radial velocity. The tangential velocity is slightly decreased by an
increase in «. The effect of @ on the magnetic field M is shown in Figure 2(a). For large values of «,
the magnetic field maintains the same strength as at the disk surface for a small distance from the
disk and then falls to its edge strength in a very short distance. A higher value of injection (A= —1)
gives similar effects of « on m, m" and G (not shown), but has a more pronounced effect on M
(Figure 2(b)). The parameter « has the same effect on m, m’ and G when there is suction (4 =0-5) as
when there is injection. The only relevant difference is that m’ peaks at a much lower level.
Increasing « in the presence of suction causes M to fall to the edge strength quickly (Figure 2(c)).

Figure 3 shows the effect of § on the flow fields when suction (4 = 1) is applied and « = 1. As 8 gets
large, the axial flow (Figure 3(a)) towards the disk decreases and becomes a constant throughout
the boundary layer when f=1. When f increases, the radial velocity (Figure 3(b)) decreases and
disappears at §=1. The effect of  on the tangential velocity and the magnetic field is not very
pronounced, so is not shown.
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Figure 2. Effect of « on magnetic field with f=0-2: (a) A= —0-5, x=10, 5, 1, 05 (dotted, short dashed, long dashed, solid);
(b) A=—1,a=35, 1, 05 (dotted, dashed, solid); (c) 4=05, a=10, 5, 1, 05 (dotted, short dashed, long dashed, solid)
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Figure 3. Effect of § on flow fields with A=1,a=1and $=0, 02,06, 1 (dotted, dashed, solid, dash-dot): (a) axial velocity;
{b) radial velocity

Table 1. Effect of A, a, and § on m(o0), m"(0), M'(0) and G'(0)

A x B 2m(o)  m(0) - M(0) —~G(0)
400 05 02 80008 005749 400023 800057
200 05 02 40066 011479 200180 400456
1:00 05 02 20490 022387 101351 203422
0-50 05 02 12301 036553  0-56466 116202
000 05 02 08223 048806 025234 0-60054

—005 05 02 07999 049210  0-22968 0-56088

—100 05 02 05111 038300 001678 0-13083

—0-50 05 02 06560 046997 008367 029220

—0-50 10 02 07249 046982 006460 029280

—0-50 50 02 07395 046826 000072 029178

~0-50 100 02 07392 046799 000000 029138

—100 05 02 05111 038300 001678 013083

—1-00 10 02 06441 038278 000334 013070

—1-00 50 02 06642 038267 000000 0-13055
050 05 02 12301 036553 056466 116202
0-50 10 02 12530 037531 1-08979 1-17023
0-50 50 02 12602 038587 507951 1-17484
0-50 100 02 12605 038764 1005441 117511

—~0-50 10 00 07607 048948 006982 030217

—0:50 10 01 07524 048459 006855 029988

—~0-50 10 02 07249 046982 006461 029280

—0-50 10 03 06680 044495 005391 0-28026

—050 10 04 05212 040954 004441 026031
1-00 10 00 20578 024242 201941 203853
1:00 10 02 20556 023290 201867 203707
1:00 10 06 20378 015625 201266 202519
1-00 10 10 20000 000000  2:00000 200000
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The effect of B on the flow fields when fluid is injected at the disk surface (negative A)and a=11is
slight and is not shown. The axial velocity decreases as f increases. The effect is more pronounced
atinfinity but still small. As B gets large, an increase in  causes larger decreases in m at infinity. As
increases, the crossover point from negative to positive flow moves away from the disk. An increase
in B decreases the radial velocity. Again, this change increases as § increases. However, the
tangential velocity and the magnetic field strength increase as § increases.

From Table I we can see that changes in 4 have a more pronounced effect on G'(0) than do
changes in o« and . Changes in « have a very small effect on G'(0). As A4 gets smaller (which decreases
|G'(0)]), the effect of A decreases. However, as § gets larger (which also decreases |G'(0)] ) there is an
increasing effect on G'(0).

From Table I, critical values (where G'((0) = 0) of A4, a and § would occur for small 4 and large . It
is apparent from the M’(0) column that M’'(0) approaches zero faster than G'(0) does. Thus shooting
needs to use a large t for G and M to converge to zero. As previously mentioned, this results in
numerical instability, and considerable computational difficulty was encountered attempting to
find critical values. To find values for A, « and § where G'(0)=0, an expensive and involved
multiple-shooting technique'® was employed. Using this technique, values for G'(0) close to zero
were obtained by varying § and keeping A =0-1 and « = 1-0. Using three data points close to zero,
quadratic extrapolation to the limit yielded f=1-1072.

Table II shows excellent agreement of our results with the approximate analytic solution
obtained by Pao!° for A=0. The maximum percentage difference in Table II is 0-197% for m"(0),
0-174% for G'(0), 0-391% for M'(0) and 2-016% for 2m(o0), the latter occurring at a=1-0, §=0-70.

Table 11. Comparison of current results with those of Pao!? (hatted)

o B m"(0) m"(0) -G -GO0 —M© —M©O 2mw) 2m(o)

05 000 0-51024 0-51023 061592 061592 0-26227 026229 0884 0-884
05 00s 0-50886 0-50885 061501 061501 026170 026172 0882 0-881
05 010 050470 0-50471 0-61223 061223 025997 025997 0871 0-870
05 015 049778 0-49779 060749 060748 025696 025692  0-852 0-852
05 020 0-48806 0-48806 0-60054 060054 (25236 025234  0-823 0-822
05 025 047550 0-47550 0-59102 059100 024573 024566 0778 0777

10 000 0-51024 0-51023 061592 061592 039625 039625  0-884 0-834
10 010 0-50558 0-50558 061363 061363 039469 039469  0-880 0-880
1-0 020 0-49154 0-49154 0-60657 060657 038991 0-38991  0-867 0-867
1-0 030 0-46786 0-46786 0-59423 059423 0-38152 0-38512  0-844 0-844
10 040 0-43406 0-43405 0-57552 057552 036872 036874  0-809 0-809
10 050 0-38936 0-38936 0-54836 054834 034998 034998  0-755 0-755
10 060 0-33266 0-33265 0-50822 050816 032186 032175 0669 0-669
1-0 070 0-26296 0-26289 044319 044242 027451 027344 0506 0-496

100 000 0-51024 0-51023 061592 061592 113399 113412 0884 0-884
100 020 0-50058 0-50057 0-61378 061378 1-12916 1-12915 0883 0-883
100 040 0-47120 0-47119 060717 060717 1-11380 1-11379 0878 0-878
100 0-60 042078 0-42078 0-:59540 059540 108638 108638  0-870 0-870
100 080 0-34650 0-34650 0-57695 057695 104322 104322  0-857 0-857
100 100 0-24202 0-24201 0-54816 054816 097545 097545 0838 0-838
100 120 (0-08714 0-08713 0-49600 049600 085155 0-85155 0805 0-805
100 130 —007124 —0-07110 0-41399 041412 0-65578 0-65606 0757 0-759
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ASYMPTOTIC COMPARISONS

Applying standard perturbation techniques to equations (9}11) for large A and small « and ,
we get _
GO)~G0) =—24,

M)~ M'(0) = —2Aa,

o—p?
440’

m’'(0)x~m"(0) =

From Table III we see that the asymptotic formula values compare favourably with the results
obtained for 4 > 1. Also, changes in a do not affect the goodness of the asymptotic formulae within
the range studied. Furthermore, there is good agreement for f values less than 1-0.

CONCLUSIONS

The rotating disk acts as a centrifugal fan. The radial flow is balanced by an induced axial flow
towards the rotating disk. When suction is applied at the disk surface, the radial flow decreases, the
axial flow at infinity increases towards the disk and the boundary layer thickness decreases. The
opposite effect is observed when the fluid is injected at the disk surface; the radial velocity increases,
the axial velocity at infinity decreases and the boundary layer thickens. With an impermeable
rotating disk, an increase in § decreases the axial velocity at infinity and increases the boundary
layer thickness. As a increases, the boundary layer thicknesses of the flow and magnetic field
decrease.

The effect of the magnetic Prandtl number « on the fluid flow is negligible. Similarly, the effect of
B on the magnetic field is negligible. Conversely, the effects of « on the magnetic field and g on the
fluid flow are more significant.

The tables and figures here show the effect of the parameters A4, « and § on the fluid flow and
magnetic field for order-of-magnitude variations in the parameters. These data would apply to
applications in magnetohydrodynamic heat shielding, for example.
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